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Abstract—The increasing demands of modern space-based
communication networks, particularly for 6G and beyond, re-
quire innovative solutions to improve the efficiency of Low Earth
Orbit (LEO) satellite systems. Traditional and non-intelligent
routing protocols face challenges in meeting the requirements
for real-time data transmission, failing to adapt to dynamic
and large-scale networks and changing traffic demands. This
research aims to address these limitations by developing machine
learning-based distributed routing protocols specifically designed
for heterogeneous LEO satellite networks. The study will leverage
reinforcement learning (RL) techniques to optimize next-hop
routing decisions, accounting for the intermittent nature of inter-
satellite links. Through a combination of supervised learning
to predict satellite-to-satellite communication opportunities with
RL-based routing, this research seeks to enable real-time, cost-
efficient, and autonomous decision-making within Federated
Satellite Systems.

Index Terms—Low-Earth Orbits, Distributed Satellite Systems,
Federated Satellite Systems, Neural Networks, Machine Learn-
ing, Supervised Learning, Reinforcement Learning

I. INTRODUCTION

The launch of Sputnik 1 by the Soviet Union in 1957
marked the beginning of the space age, proving the feasibility
of placing objects into Earth’s orbit. This milestone paved
the way for the growing number of satellites launched for
scientific research, navigation, Earth Observation (EO), and
communications. Figure 1a shows the evolution of Earth-
orbiting satellites from 1957 to 2023, emphasizing the rapid
expansion of the space sector, particularly in recent years. It
highlights not only an exponential increase in satellite numbers
but also a broader diversity of entities involved.

A. Monolithic satellite systems

During the 1960s and 1970s, satellite technology advanced
significantly, driven by missions like Lunar 2 (the first to
reach the Moon’s surface), Vanguard 2 (the first photograph

of Earth from space), Tiros-1 (the first weather satellite), and
Intelsat I (the first commercial communication satellite). By
the late 1970s, nearly 2,000 satellites had been launched,
predominantly by the Soviet Union and the United States, with
minor contributions from countries like the United Kingdom,
France, China, and Japan. During this period, satellites were
designed as monolithic systems, where all necessary functions
and components were integrated into a single platform. These
systems were inherently complex, requiring meticulous
design and integration, often resulting in large platforms with
significant resources, many of which remained underutilized.
In such designs, the failure of a critical component could lead
to the loss of the entire mission, as there was no redundancy
beyond the single satellite. As a result, the development and
launch costs were significantly high and these systems were
inflexible to changing needs or mission requirements.

As shown in Figure 1b, most monolithic systems were
launched into Low-Earth Orbits (LEOs), which range from
600 km to 2,000 km above the surface. LEOs are advantageous
for high-resolution imaging and low-latency communications,
making them particularly attractive for environmental mon-
itoring and global internet coverage. However, LEOs suffer
from short operational lifespans due to atmospheric drag,
causing most satellites launched before the 2000s to be no
longer operational, as shown by the hatched areas in Figure
1b. Despite these limitations, LEO remains the most densely
populated orbital region today.

B. Distributed Satellite Systems

Advancements in space technology have significantly re-
duced development and launch costs, enabling the emergence
of small, low-cost platforms with reduced mass and simplified
designs, opening the door for a broader range of organizations



(a) Annual proportion of different satellite owners, including United States
(US), Commonwealth of Independent States (CIS), People’s Republic of China
(PRC), United Kingdom (UK), and Japan (JPN).

(b) Annual proportion of LEO satellites, decayed satellites, and other non-
decayed satellites

Fig. 1. Histogram illustrating the annual number of satellites launched from 1957 to 2023, detailing the distribution of satellite owners and orbital types over
time. Numeric data sourced from Celestrak [1].

to participate in satellite missions. These changes have given
rise to Distributed Satellite Systems (DSS) [2], consisting
of multiple smaller satellites working collaboratively toward
shared objectives, such as global communication, Earth obser-
vation (EO), or navigation.

The first satellite constellation, the U.S. Navstar Global
Positioning System (GPS), launched in 1978 and fully opera-
tional by 1993 with 24 Medium Earth Orbit (MEO) satellites
across six orbital planes. Due to its higher altitude, MEO
enables global coverage with fewer satellites and longer lifes-
pans than LEO, allowing GPS to continue providing global
navigation and timing services. In the following years, Russia,
China, and Europe launched their own Global Navigation
Satellite Systems (GNSS), known as GLONASS, BeiDou, and
Galileo, respectively.

Beyond GNSS, constellations have greatly improved com-
munication services, especially in areas lacking traditional
infrastructure. In 1998, the Iridium constellation became the
first to offer global satellite phone and data services via 66
LEO satellites distributed across six polar orbital planes at
780 kilometers altitude. Equipped with Inter-Satellite Links
(ISLs), these satellites enable direct communication routing
without relying on ground stations.

Constellations have also become a key solution for EO
applications such as weather forecasting, disaster management,
agriculture, and climate research. As an example, the U.S.
Planet Labs’ Doves constellation, operational since 2015,
comprises 200 small LEO CubeSats satellites capturing
near-daily imagery for environmental monitoring. A key
feature of most EO constellations is that they operate in
Sun-synchronous orbits (SSOs), ensuring consistent lighting
conditions for reliable data [3].

The advancements in space technology have enabled the
development and launch of large numbers of satellites and
constellations at reduced costs, resulting in a growing number
of orbiting objects around the Earth and shaping the future
of space missions. Additionally, with the definition of fifth-
generation mobile communication (5G) in 2015 the satellite
mission requirements evolved, especially with the definition of
Non-Terrestrial Networks (NTNs) [4], to expand and comple-

ment terrestrial communication networks, enhancing connec-
tivity for Internet of Things (IoT) devices, supporting ultra-
reliable low-latency communication (URLLC) and enhanced
mobile broadband (eMBB).

These new requirements far surpass the capabilities of
traditional satellite constellations, which were designed for
specific missions with predefined and limited objectives.
To meet this growing demand, recent DSS constellations
are further increasing their capabilities, such as Iridium
NEXT, Starlink [5], and OneWeb [6]. Moreover, these
increasing demands are also impacting EO constellations,
driving the need for real-time imagery with advanced sensing
capabilities. To manage the rising data volume, ISLs are being
explored as a solution, allowing direct satellite-to-satellite
communication to optimize storage capacity and improve
ground-link availability. This approach could greatly enhance
data transfer efficiency and throughput, enabling real-time
EO applications [7].

Although these DSS constellations with enhanced
capabilities address most of the growing demands, they
still encounter notable inefficiencies. Typically consisting
of homogeneous satellites with predefined functions, these
constellations struggle to adapt to real-time, dynamic, and
evolving requirements. Additionally, traditional DSS often
suffer from resource underutilization during duty cycle
operations, leaving critical resources idle during inactive
mission phases.

C. Federated Satellilte Systems

Federated Satellite Systems (FSS) represent a specific type
of DSS where heterogeneous satellites with independent mis-
sions collaborate opportunistically to share unused resources
such as power, storage, processing time, and downlink oppor-
tunities [8]. The concept was developed between 2013 and
2015 driven by the increasingly crowded near-Earth space
environment and drawing inspiration from the principles of
cloud computing, where nodes share resources on demand,
optimizing their usage and avoiding maintaining independent
and expensive infrastructure with underutilized resources. This
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collaborative approach not only enhances the performance of
existing satellite missions but also enables the creation of new
virtual missions. In that regard, FSS can better adapt to the
growing demands, requirements, and emerging technologies,
enhancing scalability without the need to deploy additional
constellations.

The authors in [8] also present a comprehensive analysis of
implementing FSS to enhance EO missions. The case study
demonstrates how a customer radar altimetry satellite, along
with 41 resource-supplier LEO satellites from the Iridium con-
stellation, can significantly increase total access time, enabling
near-real-time data and expanding EO mission capabilities.
FSSs are also beneficial for satellite communication networks
by replacing malfunctioning communication nodes, providing
additional storage, creating alternative and less congested
paths, and handling traffic spikes or long-term increases,
resulting in a more robust and adaptable network.

The concept of FSS remains an active area of research due
to the significant technical and operational challenges involved
in establishing a peer-to-peer communication network between
the customer and the supplier. First, the diversity of ISL
technologies in this heterogeneous environment complicates
the reliable establishment of the federations. Authors in [9]
propose the use of Software Defined Radio (SDR) as a flexible
communication system capable of dynamically adjusting the
Radio Frequency (RF) characteristics. Second, the involve-
ment of multiple stakeholders introduces legal complexities,
particularly regarding the sharing of systems and sensitive
data across different organizations. Security requirements and
authentication protocols, as discussed in [10], are crucial to
addressing these concerns. Third, the varying altitudes and
inclinations of heterogeneous networks create dynamic typolo-
gies characterized by sporadic and intermittent communication
links. This variability makes it challenging to establish optimal
routing paths for efficient resource sharing.

While the first and second challenges focus on device
standardization and protocol development, the third presents
greater opportunities for research into optimizing end-
to-end communication. Moreover, the emergence of
sixth-generation mobile communications (6G) is placing
unprecedented demands on satellite networks, requiring real-
time applications with ultra-low latency, high data rates, and
ultra-high frequency bandwidth for ultra-wide-area broadband
access [11], [12]. In such a complex 6G environment
with increasing density, heterogeneity, and traffic demands,
Artificial Intelligence (AI) is seen as a crucial enable for its
predictive capabilities, such as forecasting traffic patterns,
user behaviors, and potential network failures. Additionally,
AI-driven satellite operations allow intelligent and real-time
decision-making processes with continuous adaptation to
real-time conditions, ensuring optimal performance [13], [14].

Given the complexity of establishing FSS under the strin-
gent demands of 6G, this thesis specifically focuses on ad-
dressing the challenge of developing optimal and efficient
routing protocols for heterogeneous networks with intermittent

ISLs. We leverage AI’s predictive capabilities and real-time
decision-making to ensure optimal end-to-end routing deci-
sions.

II. RELATED WORK

A key challenge in FSS is managing the significant relative
motion between heterogeneous satellites with different orbital
parameters. This dynamic environment is characterized by
sporadic and intermittent ISLs, defined based on satellite
proximity and antenna pointing direction. Consequently,
resource sharing between neighboring satellites becomes
difficult, as links may break before the federation is complete.
The complexity increases when federations need to be
established between distant satellites, as disruptions in any
intermediate link can break the connection between the
supplier and the customer.

In homogeneous systems like the Iridium constellation,
satellites are positioned at uniform altitudes and inclinations.
In this mesh-like configuration, intra-plane satellites maintain
constant distances, while relative motion occurs only between
inter-plane satellites, especially near the poles and across
orbital seams. Consequently, Iridium satellites are equipped
with two consistently available intra-plane ISLs and two
temporal inter-plane ISLs. This homogeneous configuration
significantly simplifies routing, as satellites not only share
communication capabilities but also move in coordinated
and predictable patterns. From the satellite’s perspective,
the network appears static, with only periodic disruptions
of certain inter-plane links. In an ideal scenario, where
node states remain unchanged, optimal end-to-end routes
between satellites can be precomputed using algorithms such
as Dijkstra [15]. Additionally, although the space-ground
network topology is not fixed, it follows a predictable and
periodic pattern of several days, allowing the precomputation
of optimal paths between satellites and ground stations.
However, static routing protocols are insufficient in real-world
network conditions, where node states change dynamically
due to factors like congestion, link failures, limited battery,
or restricted bandwidth. In that sense, adaptative or dynamic
routing protocols like the Extended Bellman-Ford (EXBF)
[16], while more complex, must be implemented to ensure
consistent network efficiency and reliability [17].

In contrast to mesh-like topologies, heterogeneous networks
face unique challenges due to the diversity of orbital periods
and inclinations. Although orbits in heterogeneous satellite
systems are also predictable and periodic, the overall
periodicity can span several days or even months. In such
conditions, even assuming stable node states, static protocols
are impractical because end-to-end routes with intermittent
ISLs are only valid for short periods, and factors such as
atmospheric drag and the Earth’s non-sphericity can render
these routes unusable after the system’s long periodicity
cycle. Moreover, as the number of satellites increases, the
system periodicity extends, leading to scalability issues.
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In such highly dynamic environments, traditional protocols
like EXBF can struggle due to their heavy ground link
dependencies, Additionally, the convergence time required by
these protocols may be insufficient to handle rapid topology
changes, requiring extensive end-to-end path re-computations.

Autonomous FSS offers a promising solution in this con-
text by reducing the important ground-link dependencies
that would render real-time applications unfeasible, espe-
cially in overpopulated space environments where optimal
routes change rapidly. A major challenge for implementing
autonomous satellite systems is the limited onboard resources,
making onboard centralized computations impractical and
non-scalable as the computational demands increase with
the number of satellites. Moreover, traditional autonomous
flooding-based routing methods for neighbor state discovery,
such as Darting [18], can generate excessive overhead, con-
suming critical resources and reducing system efficiency.

Distributed FSS are gaining prominence as a lightweight,
scalable solution for decentralized network management in
resource-constrained environments. By empowering satellites
to autonomously make routing decisions based solely on local
information, these systems enable real-time, cost-effective
operations. Although local data may not always guarantee
globally optimal solutions, it enables faster and more efficient
decision-making while ensuring scalability by only using local
information.

A. Autonomous satellite encounter prediction

To address the challenges of autonomous and decentralized
routing in FSS networks with sporadic ISLs, it is essential
for satellites to predict their communication opportunities, or
encounters, with their neighbors. These encounters represent
the time windows during which two satellites are within range
to establish a communication link. Accurately forecasting
these opportunities not only reduces energy consumption by
avoiding failed connection attempts but also optimizes the
use of available communication resources.

Traditional methods for anticipating satellite encounters
typically rely on deterministic, centralized, ground-based
orbit propagation techniques [19], [20]. While on-ground
approaches deliver highly accurate contact windows,
their centralized nature limits scalability, rendering them
impractical for large-scale satellite networks. Recent research
has explored decentralized solutions to grant satellites
greater autonomy [21]. However, these approaches still
rely on orbital propagation, which imposes considerable
processing demands on resource-constrained satellites. The
authors in [22] propose an alternative cost-efficient method
to predict satellite contacts without relying on extensive
orbit propagation solutions. Nevertheless, this approach is
constrained by some mathematical linearization, limiting its
applicability to simplified environments where satellites are
assumed to follow circular Keplerian orbits. As a result,
it becomes unsuitable for realistic LEO networks, where

near-circular orbits are affected by significant perturbations
such as atmospheric drag and Earth’s oblateness. Given
the promising capabilities and wide-range applications of
Machine Learning (ML) techniques, the authors in [23]
explore the use of Graph Neural Networks (GNNs) together
with Recurrent Neural Networks (RNNs) as a scalable
solution for autonomously and cost-effectively modeling
the temporal evolution of satellite encounters. However,
these algorithms require comprehensive network information,
demanding more extensive data acquisition and processing
capabilities compared to methods that operate solely on local
information.

Building on this, we envision the need to anticipate the
contact opportunities between satellites in a distributed,
cost-efficient, and autonomous manner. By leveraging ML,
we can effectively capture the complex dynamics of satellite
motion, including atmospheric drag and Earth’s non-sphericity,
while benefiting from fast and cost-effective model inferences.

B. Traditional routing protocols

Authors in [24] investigate current technologies to as-
sess the feasibility of adapting existing routing protocols to
meet the requirements of FSS. They introduce the concept
of Inter-Satellite Networks (ISN), a heterogeneous network
that enables sporadic end-to-end connections between distant
satellites through multiple intermediate nodes. They classify
existing routing protocols into four categories: LEO Satellite
Network (LSN) protocols, Multi-Layered Satellite Network
(MLSN) protocols, Delay-Tolerant Network (DTN) protocols,
and Mobile Ad-hoc NETwork (MANET) protocols.

Protocols developed for LSNs are specifically designed
for mesh-like topologies in homogeneous satellite networks,
where multiple minimum-hop end-to-end paths can be easily
derived by comparing the vertical and horizontal coordinates
of the source and destination nodes. Among the most well-
known protocols are the Explicit Load Balancing (ELB) pro-
tocol [25] and the Traffic-Light-based Routing (TLR) protocol
[26]. Both are decentralized, proactive routing protocols that
provide suboptimal solutions by considering only the queue
length of neighboring nodes and rerouting traffic through
alternative minimum-hop paths to prevent congestion. Nev-
ertheless, these solutions are strongly bound by the mesh-like
topology and are difficult to apply to the more complex and
heterogeneous structure of ISNs.

In contrast, MLSN protocols integrate constellations with
varying capabilities across LEO, MEO, and GEO layers,
maintaining a mesh-like topology within each layer. Upper-
layer satellites act as relays for lower-layer groups, managing
congestion through Inter-Layer Links (ILLs). While these
lower-layer groups are fixed, they are periodically managed
by different upper-layer satellites due to their relative motion.
Among these protocols, the Multi-Layered Satellite Routing
(MLSR) algorithm [27] stands out for computing the shortest
delay paths between satellites and ground gateways in a three-
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layer network, enhancing network capacity, reliability, and
global coverage compared to single- or dual-layer protocols.
However, MLSR’s reliance on centralized path calculations
by GEO satellites using link-state control packets exchanged
across all the layers introduces scalability challenges, limit-
ing its effectiveness in large, dynamic networks or latency-
sensitive real-time applications requiring low latency and fast
adaptability.

Alternatively, MANET is a network of mobile devices char-
acterized by its dynamic and unpredictable topology, where
nodes can move freely and independently, causing frequent
changes in the network structure. MANET routing protocols
manage this unpredictability through a discovery phase, where
nodes flood the network with ”hello” packets to identify
neighbors and establish routes reactively or proactively. Re-
active protocols, like the Ad Hoc on-Demand Distance Vector
(AODV) protocol [28], reduce overhead by discovering routes
only when a packet needs to be forwarded but can intro-
duce delays in adapting to topology changes, making them
unsuitable for highly dynamic networks demanding ultra-low
end-to-end latency. In contrast, proactive protocols, like the
Optimized Link State Routing Protocol (OLSR) [29], ensure
faster adaptation by continuously updating routes but consume
significant bandwidth and battery life due to constant control
packet exchanges, even when data transmission is unnecessary.
For this reason, proactive protocols are also not ideal for highly
dynamic and resource-limited networks, as the associated
overhead can quickly deplete the nodes’ battery life. More
sophisticated and efficient strategies than flooding mechanisms
can be employed to optimize both reaction time and bandwidth
in networks with deterministic node mobility, such as ISNs.

Finally, DTNs are designed to handle long delays and
frequent disconnections, using a store-and-forward approach to
temporarily store data at intermediate nodes until a forwarding
opportunity arises, enabling transmission even without direct
paths to the destination. While unsuitable for real-time appli-
cations, DTNs excel in scenarios like deep space communica-
tions with low node density and intermittent connectivity. In
large heterogeneous satellite networks, where paths between
nodes usually exist, DTNs can still be valuable, especially
in FSS, by prioritizing critical data while storing less urgent
requests for optimal transmission opportunities. This flexi-
bility makes DTNs a useful tool for optimizing data flow
in resource-constrained environments. Contact Graph Routing
(CGR) [30] is a dynamic and centralized DTN algorithm,
that calculates optimal paths for each data transmission based
on the time-varying network conditions modeled as contact-
graph, where nodes represent communication links. While
effective in space communication, CGR’s scalability to larger
networks is limited. The Shortest-Path Tree Approach for
Routing in Space Networks (SPSN) [31] addresses this by
replacing the contact-graph model with a traditional node-
vertex graph, where edges represent contact opportunities.
SPSN allows computing optimal routes for all destinations
in a single execution, significantly reducing computational
time and improving efficiency in large-scale space networks

with thousands of contacts. However, SPSN is a centralized
approach that still depends on complete network state infor-
mation, which is often not available in real-time, limiting its
applicability in dynamic, real-time environments.

The authors in [24] conclude their analysis by noting that
none of the existing routing protocols fully meet the unique
requirements of ISNs, including distributed, adaptive, and
resource-constrained solutions. As for future research, they
recommend the development of a specific routing protocol
tailored for ISNs.

C. Machine Learning-based routing protocols

The authors in [24] do not provide an in-depth exploration
of distributed hop-by-hop protocols or more modern
approaches involving ML. On the one hand, although
hop-by-hop protocols may result in sub-optimal solutions,
they allow each node to make simple and cost-efficient
forwarding decisions based solely on local information.
These protocols are attractive candidates for large-scale,
resource-constrained networks due to their fast response
times and enhanced autonomy, eliminating the dependency on
centralized, multi-hop ground-based computing. Furthermore,
centralized routing protocols not only face challenges related
to complexity and scalability but are also vulnerable to single-
node link failure compromising the entire routing path. On
the other hand, ML approaches offer a promising alternative
for resource-constrained satellite networks by avoiding the
slow convergence of metaheuristic methods like Genetic
Algorithms (GA) [32] and the high computational demands
of exact solutions like Dijkstra’s algorithm. By leveraging
offline training and onboard execution, ML approaches
can adapt more quickly to network changes, making them
especially valuable for highly dynamic satellite networks.

The authors in [33] provide a comprehensive survey of
ML-based solutions for intelligent routing, with a focus on
both multi-hop and hop-by-hop strategies. They explore how
ML can be applied to optimize various aspects of end-to-
end communication. The study highlights ML as a promising
alternative to traditional network optimization methods, which
often struggle with the high complexity and dynamic nature
of 6G networks due to their limited adaptability, lack of
intelligent decision-making, and slow convergence rates. The
survey mainly categorizes ML-based routing approaches into
two groups: Supervised Learning (SL) and Reinforcement
Learning (RL).

SL-based routing approaches predict optimal paths us-
ing historical traffic patterns incorporating both past traffic
flows and link-state information. SL-based methods have been
shown to outperform traditional techniques by reducing com-
putational complexity and signaling overhead [34]. However,
these approaches struggle to adapt to dynamic environments,
especially in heterogeneous networks characterized by high
variability and complexity. Additionally, the accuracy of SL-
based routing decisions is often constrained by the quality and
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relevance of the benchmark training data, which can degrade
performance in real-time network scenarios.

RL has recently gained significant attention in the field of
routing due to its ability to learn routing policies or strategies
without the need for labeled training data, making it partic-
ularly well-suited for complex systems where acquiring such
data is difficult or impractical. RL agents learn optimal policies
by interacting with an environment, taking different actions
based on the current state, and receiving reward feedback. Ini-
tially, agents take random actions to explore the environment,
but as training progresses, they increasingly exploit the best
actions, gradually reducing the exploration rate to learn the
policy that maximizes cumulative rewards over time. Routing
policies are trained on-ground with abundant resources and
uploaded to resource-constrained agents. These policies can
then undergo further fine-tuning with minimal exploration,
enabling the agents to make real-time decisions based on the
current state of the environment while continuously adapting
their strategies according to the received rewards, offering sig-
nificant advantages against dynamic scenarios and unexpected
conditions.

In the LSN context, the environment is the LEO satellite
network, characterized by a given topology and dynamism.
This environment can accommodate either a single learning
agent or multiple agents learning collaboratively or competi-
tively in a decentralized manner. Additionally, the RL agents
can select either the next-hop node to forward the packet
(hop-by-hop protocols) or the entire routing path (multi-hop
protocols). Hop-by-hop protocols rely on local information to
determine the next node for packet forwarding, offering faster
adaptation with lower computational demands. In contrast,
multi-hop protocols calculate entire routing paths based on
global network states. While multi-hop protocols ensure global
optimality, they require extensive resources and complete
network information, and are more sensitive to single-node
failures or congestion, rendering the entire path unusable.
Instead, hop-by-hop protocols are better suited for resource-
constrained environments, providing quicker responses to net-
work dynamics. While decentralized approaches may not guar-
antee global optimality, they are more adaptable and scalable
in dynamic satellite networks.

In this context, we reviewed a range of recent studies on
decentralized RL-based routing protocols with hop-by-hop
decision-making strategies. We categorized these protocols
according to the network topology, distinguishing between
static and dynamic.

1) Static topology: In a static topology, nodes remain fixed,
either because they are stationary or because they all move
with the same velocity and pattern. For instance, in a satellite
constellation network like Iridium, topology can be considered
static, even though there is some relative motion between inter-
plan satellites in both cross-seams and polar regions.

In [35], the authors propose a decentralized routing protocol
for packet transmission between ground stations through a
polar satellite network comprising 150 satellites in a static

topology. The relative motion between satellites and the
ground stations can be assumed null during the transmission
time. Each satellite makes distributed next-hop forwarding
decisions based on local information from its four consistent
neighboring nodes. The state space is modeled with discrete
values representing the congestion level of each node, and a
tabular RL algorithm, Q-learning, is applied. The reward for
each action is based on the queuing delay of the next-hop
node and the distance to the destination. When the next-hop
node has already been visited, the reward for that action is
heavily penalized. Successfully forwarding the packet to the
destination yields a large positive reward.

Similarly, [36] applies Q-learning for a decentralized routing
between satellites in a Walker Delta constellation with thou-
sands of nodes. Apart from evaluating the average end-to-end
delay, they measure the packet drop rate, defined as the ratio
of packets not received before the Time-to-Live (TTL).

Both [35] and [36] demonstrate that decentralized,
cost-efficient Q-learning-based routing (Q-routing), despite
utilizing simplified state representations, can dynamically
adapt to local state information, achieving performance
comparable to traditional centralized Shortest-Path (SP)
algorithms. Under high traffic demands, these approaches
have been shown to outperform centralized algorithms by
minimizing end-to-end delays and effectively preventing
congestion and packet loss.

Other research addresses distributed routing in satellite
networks using more advanced RL algorithms, known as
Deep Reinforcement Learning (DRL) capable of handling
continuous state spaces through Neural Networks (NNs).

Authors in [37] apply a DRL approach for decentralized
routing in a polar satellite network with 48 LEO satellites
evenly distributed across eight orbital planes. Leveraging NNs,
each satellite can take next-hop forwarding decisions based
on a continuous state. While this approach is more resource-
intensive during both training and inference, it can improve
performance by incorporating more realistic and detailed in-
formation about neighboring nodes. The state space includes
metrics such as Signal-to-Noise Ratio (SNR), queuing delay,
bandwidth, and distance to the destination. The results demon-
strate improved average end-to-end delays compared to two
benchmark decentralized protocols, which also rely on local
information but select the next hop solely based on the highest
node weight, without incorporating feedback from current or
past actions.

Similarly, the authors in [38] train a decentralized DRL-
based routing algorithm for a Starlink network consisting of
140 satellites. The local continuous state space considers only
the queue length of neighboring satellites and their distance to
the destination. However, the reward is dynamically adjusted
based on the congestion level of the next-hop node, consid-
ering the propagation delay when the queue is relatively free,
or the transmission time when the queue is near congestion.
The results demonstrate that the DRL-based routing out-
performs decentralized protocols, with lower delivery times,
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reduced packet loss rates, and higher throughput, particularly
under heavy traffic loads. Furthermore, the DRL-based routing
demonstrates superior performance compared to Q-routing
with discrete state space, emphasizing the importance of
utilizing realistic information.

The authors in [39] apply a decentralized DRL-based
routing strategy to the Iridium constellation. This appraoch
incorporates the Depth of Discharge (DoD) of neighboring
satellites into the state space, allowing for a traffic balance by
forwarding packets to satellites with higher battery capacity,
extending the operational lifespan of the satellite network.
Additionally, the strategy ensures timely packet delivery by
incorporating the remaining propagation time of the packet
into the state space. The results demonstrate more balanced
power consumption compared to SP-based routing, while still
meeting end-to-end delay constraints.

Alternatively, the DRL-based decentralized routing in
[40] considers data from two-hop neighbors to anticipate
and avoid congestion before it occurs. Particularly, the state
only considers the queue length and the congestion level,
classified as free, busy, or congested. During free or busy
queues, the reward is proportional to the distance between
the next hop and the destination. When the next hop is
congested, the reward is penalized with a negative value. This
approach outperforms ELB, achieving a significantly lower
drop rate, reduced end-to-end delay, and increased throughput.

These studies highlight the effectiveness of DRL-based
decentralized routing in static satellite networks. The diversity
and complexity of the state space representations showcase
its flexibility in capturing various link state attributes, such
as queue length, capacity, and battery levels, while enabling
the reward function to be tailored to specific optimization
goals. Compared to traditional SP routing methods, DQN-
based approaches demonstrate significant reductions in
end-to-end delays, packet loss rates, and traffic imbalances,
particularly under heavy traffic loads. This illustrates the
effectiveness of RL-based decision-making techniques in
addressing the growing requirements in 6G networks in
terms of ultra-low latency and increased traffic demands.
Nevertheless, their applicability has been shown solely for
mesh-like architectures, and their performance in more
complex environments with dynamic topologies remains
unproven.

2) Dynamic topology: Some studies have focused on
addressing the routing challenges in dynamic topologies
using RL approaches. Dynamic topologies are characterized
by relative movement between nodes, which can be either
predictable or random. In the context of FSS, the ISN
discussed in [24] features a highly dynamic yet predictable
topology network, where heterogeneous satellites move at
different velocities, creating sporadic links and a constantly
changing number of neighboring nodes.

Authors in [41] applied a DRL approach to manage traffic

routing in a Space-Air-Ground Integrated Network (SAGI-
Net), where data packets are transmitted from ground users
(GUs) and unmanned aerial vehicles (UAVs) to either base
stations (BS) or satellites. UAVs also act as intermediaries,
assisting the network when GU-to-BS or GU-to-satellite links
become congested or suffer from reduced speeds. The DRL
model is structured as a cooperative multi-agent system, where
GUs and UAVs coordinate their actions to forward packets
while optimizing communication energy efficiency. However,
the effectiveness of the algorithm is demonstrated on a small-
scale network, comprising only one satellite, three UAVs, one
base station, and five ground users.

In [42], the authors apply decentralized Q-learning for
routing in a satellite network composed of two mesh-like
layers: 126 satellites in Very LEO (VLEO) and 50 in LEO.
VLEO satellites are organized into static groups, each group
communicating with the nearest LEO satellite acting as the
group manager. Due to the relative motion between the layers,
the LEO manager of each VLEO group changes dynamically.
The Q-learning-based routing algorithm directs traffic through
less congested routes using inter-orbital links. Results show
improved traffic distribution, significantly lower drop rates,
and enhanced throughput compared to SP, particularly in
the event of satellite failure. However, the environment is
relatively simple, consisting of just two homogeneous layers
characterized by a small topology periodicity of only one day.
In this setup, each LEO satellite can pre-compute the joining
and departure times for each VLEO group. Therefore, this
approach would not scale well in larger and more dynamic
heterogeneous networks.

The authors in [43] utilize different link connections within
the NSFNet dataset, featuring 13 nodes and arbitrary links,
to model a snapshot of a heterogeneous satellite network
with varying numbers of neighbors. To handle the fluctuating
number of neighboring satellites, they employ a GNN to
aggregate local information of each satellite, such as link
capacity and queue delay of its neighbors. This aggregated
information remains consistent in size, regardless of the num-
ber of neighbors, and serves as the state representation for
the DRL algorithm. Based on this information, the RL agent
makes next-hop routing decisions aimed at minimizing end-
to-end delay and maximizing throughput. Results demonstrate
that RL-based routing outperforms the SP algorithm in both
throughput and end-to-end delays. However, the action space
is fixed and may not fully capture all possible next-hop link
connections in large-scale network topologies. Additionally,
scalability issues may arise in the GNN state representation
phase when applied to larger networks.

The authors in [44] propose a distributed multi-agent deep
reinforcement learning (MADRL) approach to enhance routing
performance in MANET consisting of 12 nodes. These net-
works are highly dynamic, with unpredictable node mobility,
requiring flooding mechanisms for neighbor discovery. In
this approach, each node functions as an autonomous agent,
optimizing next-hop forwarding decisions based on local ob-
servations of the network state. During training, all nodes share
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Fig. 2. RL-based routing in [35]–[45] classified based on different categories.

and update the same routing policy and receive a common
reward based on the global state space and joint actions of all
agents. Each node maintains a routing table for each neighbor-
destination pair. Depending on the confidence levels in the
table entries, the agent decides whether to forward packets
via broadcast or unicast. The method demonstrates robustness
and scalability, maintaining strong performance even under
conditions beyond the original training scenarios, such as
larger networks of up to 30 nodes and more dynamic mobility
patterns.

Similarly, the authors in [45] present a Q-learning-based
routing algorithm designed for MANETs with 20 to 40 nodes.
This approach leverages Q-learning to indirectly estimate
node behavior, selecting the optimal next-hop to minimize
transmission delays while optimizing route length and sta-
bility. The algorithm dynamically adjusts to network changes
based on local node information. Simulations demonstrate its
superior performance compared to traditional MANET routing
protocols, particularly in terms of end-to-end delay and packet
delivery ratio.

Nevertheless, both [44] and [45] are specifically tailored
to MANETs, which limits their applicability in satellite
systems. Despite the dynamic nature of heterogeneous
satellite systems, their node mobility is predictable, and
neighbor discovery based on flooding mechanisms must be
avoided to optimize the onboard resources and increase the
overall routing performance.

Previous works demonstrate the applicability of RL-based
routing protocols in dynamic topology networks. While static
topology methods are unsuitable for heterogeneous networks,
dynamic topology methods are well-suited for networks
with relative node mobility. However, the analyzed studies
have primarily focused on specific configurations, either
involving unpredictable node motion, such as MANETs, or
predictable motion with limited dynamism, such as small
satellite networks structured in mesh-like layers. Figure 2
provides a summary of the related works on RL-based routing,
classifying them into different key categories: topology (static
or dynamic), network type, number of nodes, the specific RL
algorithm applied, and the four most commonly used state
representations (queueing delay, distance to destination, drop

rate, and link capacity).

Nevertheless, none of the aforementioned studies directly
address the unique challenges presented in large-scale, het-
erogeneous satellite systems, particularly within the context
of FSS. These systems are characterized by varying satel-
lite capabilities and frequent link disruptions, creating a far
more complex environment that remains largely unexplored.
Although existing RL-based methods for dynamic topologies
could potentially be applied, their performance is likely to
be suboptimal in such scenarios. This underscores the neces-
sity for a distributed routing protocol specifically tailored to
heterogeneous satellite networks. Such a protocol must effec-
tively manage intermittent ISLs, accommodate the dynamic
nature of neighboring satellites, and leverage the predictable
orbital motion inherent to these systems. To the best of our
knowledge, no ML-based approaches have yet been applied to
address these challenging scenarios.

III. THESIS OBJECTIVES

I aim to contribute to the definition of a routing pro-
tocol to be applied in the context of FSS, characterized
by a highly dynamic and heterogeneous environment, with
resource-constrained nodes. To address the limitations of
centralized solutions, this protocol will rely on distributed,
autonomous decision-making, enabling each satellite to select
the optimal next hop based on its local network state.

To achieve this goal, the thesis is structured around the
following objectives:

• Objective 1 (O1). Predict satellite-to-satellite encoun-
ters using Supervised Learning.
This objective involves developing an algorithm capable
of forecasting future contact opportunities between any
two LEO satellites from any constellation. The algorithm
must account for the key perturbations present in LEO
space and provide a cost-effective solution in terms of
time and resources, suitable for deployment on resource-
constrained satellites. Supervised Learning is proposed
due to its efficiency, rapid inference capabilities, and
ability to learn complex orbital dynamics from large
datasets.
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• Objective 2 (O2). Develop a Single-Agent RL-Based
Routing Protocol for Heterogeneous LEO Satellite
Networks.
This objective focuses on learning an optimal routing
policy for next-hop decisions in a dynamic, heteroge-
neous satellite network. The policy will rely on local
information from neighboring satellites, including queue
length, position, and link characteristics. It must ef-
fectively balance network traffic to prevent congestion
while minimizing end-to-end delay and ensuring each
packet meets its delivery time constraints. Additionally,
the policy will integrate the satellite encounter prediction
framework from Objective 1 to provide real-time infor-
mation about neighboring satellites at each time step.

• Objective 3 (O3). Develop a Multi-Agent RL-Based
Routing Protocol for Heterogeneous LEO Satellite
Networks.
Building on Objective 2, this objective addresses the
limitations of the single-agent approach by enabling
multiple agents to collaborate toward a shared goal. The
protocol will utilize centralized training, leveraging com-
plete information about the network state and the actions
taken by each agent. This collaborative approach aims to
enhance overall network performance and coordination
among the satellites.

• Objective 4 (O4). Disseminate research findings
through publications and conferences.
This objective focuses on sharing the outcomes of the re-
search with the scientific community through high-impact
publications in peer-reviewed journals and presentations
at relevant conferences. It involves documenting key
advancements in the development of the routing protocol,
including the SL-based satellite encounter predictions
and both single-agent and multi-agent RL approaches for
distributed routing. This dissemination will contribute to
advancing knowledge in the field of FSS and networking
in resource-constrained environments.

IV. METHODOLOGY AND RESOURCES

A. Methodology

• Literature Review. The first phase of the research con-
sists of an extensive review of LEO satellite networks,
routing protocols, and RL techniques. This phase aims to
identify the state of the art, major challenges, and research
gaps in these areas.

• Problem Definition. Based on the findings from the
literature review, a formal problem statement is developed
to address key challenges in LEO satellite routing, with
a focus on scalability, adapting to dynamic network
topologies, and achieving efficient routing under various
network constraints and requirements. This phase also
involves defining performance metrics and benchmarks
for evaluating the proposed solutions.

• Algorithm development. The core research effort in-
volves creating novel routing algorithms using reinforce-
ment learning to address the identified challenges. Python

will be the primary programming language due to its
rich ecosystem of libraries for machine learning and deep
learning (e.g., Keras, TensorFlow, and PyTorch).

• Validation and testing. After training, the algorithms
will be validated and tested through different realistic
LEO network conditions. Key performance metrics will
be used to compare our solution against existing routing
protocols. Performance will also be evaluated across
different network topologies and traffic patterns.

• Periodic meetings. Regular meetings will be held to en-
sure steady progress and collaborative discussion. Weekly
meetings with the supervisor will provide feedback on re-
cent developments, while biweekly meetings with the co-
supervisor and tutor will refine the problem formulation,
review intermediate results, and discuss state-of-the-art
research.

• Publications. Research findings will be documented and
disseminated through publications in high-impact jour-
nals and conferences. This will not only contribute to
the academic community but also allow for critical peer
feedback and validation of the work.

B. Resources

• i2CAT Foundation facilities. Access to office space
and essential equipment, including a personal laptop
and peripherals. Additionally, it has a dedicated server
for running computationally intensive simulations and
experiments.

• GitLab. Local GitLab server for version control, enabling
efficient code management, collaboration, and continuous
integration throughout the project.

• Jira. A tool used to manage and structure projects. More-
over, Jira can be used to implement agile methodologies,
with task tracking, sprint planning, and progress moni-
toring to ensure efficient time management and milestone
achievement throughout the research.

• Overleaf. A collaborative LaTeX editor for writing and
organizing academic documents, such as the thesis, re-
search papers, and reports. Overleaf will also allow for
seamless collaboration with supervisors.

• Pycharm. The integrated development environment for
Python, essential for developing and debugging the
Python-based algorithms and simulations used in the re-
search. PyCharm’s extensive support for machine learning
libraries like TensorFlow and PyTorch will streamline the
development process.

• UPC Campus Nord Facilities and Labs. Access to
the laboratories and other research facilities at UPC’s
Campus Nord, providing a conducive environment for
research, experimentation, and testing.

• i2CAT Foundation Projects. Participation in ongoing
i2CAT projects, which provide financial support for
publications, conference presentations, and travel. These
projects will also offer opportunities for collaboration
with external parties or internal departments such as
Space Communication.
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• UPC Projects. The ”Design of Low Earth Orbit Satellite
Communication System” project is a collaborative project
between Ajou University and UPC NanoSatLab aims to
develop core technologies for an optimized LEO satellite-
air-ground network, addressing the specific characteristics
of LEO satellite networks and payload variations. The
ultimate goal is to design a CubeSat that integrates these
advanced technologies.

• DSS-Simulator. This simulator is a framework that en-
ables to assess novel communications protocols in satel-
lite networks. It is based on an event engine that is repre-
sentative for networking events, and it has been extended
to support satellite dynamics representation [46]–[48].

V. TASKS DEFINITION AND WORK PLAN

A work package (WP) is defined for each of the objectives
O1, O2, and O3. An additional WP is allocated for overall
thesis-related tasks. To achieve objective O4, at least one
milestone (M) is included in each WP.

WP1. SL-based Satellite Encounter Prediction
• T1.1. Related works.

Conduct a comprehensive analysis of the SoA in en-
counter anticipation methods for heterogeneous networks.

• T1.2. Data set creation.
Develop three distinct datasets for training, validation,
and testing. To mitigate issues related to insufficient data,
both the training and validation datasets will consist
of synthetic data. The testing dataset, however, will be
based on real-world data sourced from Celestrak. Apply
normalization preprocessing to the datasets to facilitate
the training process.

• T1.3. SL Architecture Design.
Create a configurable framework for tuning hyperparam-
eters of a fully connected neural network, including the
number of layers and neurons per layer, to allow for easy
adjustments during experimentation.

• T1.4. Training.
Select an appropriate loss function to minimize during
the training phase. Additionally, consider other evaluation
metrics to assess final performance. Use a trial-and-
error approach to test various configurations of the SL
architecture.

• T1.5. Validation and testing.
Evaluate the model’s performance using the validation
and testing datasets, ensuring the final solution meets the
required standards.

• M1. Publications.
Produce at least one presentation in a relevant conference
and one publication in a relevant journal, detailing the
problem, methodology, and results obtained using the
SL-based encounter anticipation model. Publications
must demonstrate an accuracy higher than 90% and
show faster inference times compared to SoA methods
based on orbital propagation.

WP2. Single-Agent RL-based Distributed Routing Pro-
tocol.

• T2.1. Related works.
Conduct a comprehensive analysis of the SoA in dis-
tributed RL-based routing within satellite networks, as
well as other relevant domains.

• T2.2. Static topology environment.
Simulate a simple satellite network with a static topology,
where the number of orbits and satellites per orbit can
be configured. Define the state space, action space, and
reward functions that the agent needs to explore the
environment and learn optimal routing policy.

• T2.3. RL algorithm.
Implement a DQN with configurable parameters to ensure
robustness and adaptability for use in various environ-
ments.

• T2.4. Training and testing the DQN within the static
topology environment
In addition to the total reward per episode, consider
additional evaluation metrics such as average end-to-
end delay and packet drop rate. Utilize a trial-and-error
process to fine-tune the hyperparameters for the specific
scenario. Train the agent by forwarding one packet at a
time. Then, stress-test the policy by forwarding multiple
packets simultaneously. Assess the model’s robustness
by testing it in a larger satellite network than the one
used during training. Compere the testing results with a
benchmark method.

• T2.5. Dynamic topology environment.
Building upon the environment from T2.2, extend the
simulation by adding more satellites in various orbits to
create a heterogeneous network. Redefine the state space
to include communication encounter windows, leveraging
the SL model developed in WP1. Modify the action
space to accommodate varying numbers of neighbors
dynamically.

• T2.6. Training and testing the DQN within the dy-
namic topology environment
Similar to T2.4, perform a trial-and-error process to
determine the optimal hyperparameters for the dynamic
environment. Train the agent by forwarding single pack-
ets initially, and then stress-test by forwarding multiple
packets simultaneously. Evaluate the model’s robustness
by testing it in a larger, more dynamic, and heterogeneous
satellite network. Compare the testing results with a
benchmark method.

• M2. Publications. Deliver at least one presentation at a
relevant conference and publish at least one article in a
reputable journal, detailing the problem, methodology,
and results of the RL-based decentralized routing in
dynamic topology. The publications should demonstrate
that the proposed method outperforms traditional routing
algorithms in terms of end-to-end delay and packet drop
rate, while also showcasing high robustness, scalability,
and cost-efficiency suitable for resource-limited satellites.
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WP3. Multi-Agent RL-based Distributed Routing Pro-
tocol.

• T3.1. Multi-agent static topology environment.
Extend the environment described in T2.2 to accommo-
date multiple agents. This will primarily involve redefin-
ing the state space and reward function to reflect the
multi-agent setting.

• T3.2. Mutli-agent RL algorithm.
Enhance the DQN implementation from T2.3 to support
centralized learning with decentralized execution. In this
configuration, all satellites modify a shared policy, but
the policy is learned based on the entire network’s state
and actions.

• T3.3. Training and testing the DQN within the multi-
agent static topology environment.
Fine-tune the hyperparameters using a trial-and-error
approach tailored to the specific scenario. Train the agents
in an environment where multiple forwarding decisions
are made simultaneously by different agents. Test the
model’s robustness by evaluating it on a larger satellite
network than the one used during training. Evaluate
multiple metrics such as the average end-to-end delay and
the packet drop rate. Compare the testing results with a
benchmark method.

• T3.4. Multi-agent dynamic topology environment.
Expand the environment described in T2.5 to support
multiple agents. The same state space and reward function
defined in T3.3 should be used in this scenario, with the
assumption that each agent is aware of its neighbors at
each time step.

• T3.5. Training and testing the DQN within the multi-
agent dynamic topology environment.
As in T3.3, use a trial-and-error approach to optimize the
hyperparameters for the dynamic environment. Compare
the testing results with a benchmark method.

• M3. Publications. Present at least one paper at a
relevant conference and publish at least one article in a
reputable journal, outlining the problem, methodology,
and results of the multi-agent RL-based decentralized
routing in dynamic topologies. The publications should
demonstrate that agent collaboration outperforms single-
agent RL methods, such as the model obtained in WP2,
particularly in terms of traffic distribution and packet
prioritization.

• M4. Simulator. Develop a Python-based open-source
simulator on GitLab with configurable network
topologies (static or dynamic), customizable satellite
characteristics, flexible reinforcement learning methods
(single-agent or multi-agent), and adjustable traffic
demands.

WP4. Thesis
• T4.1. Related works.

Conduct a comprehensive review of existing literature
relevant to the research topic to establish the state of the
art and identify research gaps.

• T4.2. Research Plan writing.
Develop a detailed research plan outlining the related
works in T4.1, the objectives, and the tasks to accomplish
them, together with the timeline and milstones.

• T4.3. Thesis writing.
Write the PhD thesis, presenting the research problem,
methodology, results, and conclusions in a structured and
coherent document.

• T4.4. Corrections.
Revise the thesis based on feedback from the supervisor,
co-supervisors, and tutor to ensure accuracy and com-
pleteness.

• T4.5. Viva preparation.
Prepare for the oral defense of the thesis, including a
presentation of the research and responses to potential
questions.

• T4.6. Research carrier planning.
Develop a plan for the future research career, identifying
potential opportunities for postdoctoral work, publica-
tions, and collaborations.

• M5. Publication.
Publish a journal article based on the survey of related
works analyzed in T4.1, highlighting the significance
of FSS and the need for specialized routing protocols
to address challenges posed by dynamic topologies and
high communication demands in 6G networks.

A timeline work plan to complete each WP with its associ-
ated tasks and milestones is detailed in the Gantt diagram in
Figure 3.

VI. DATA MANAGEMENT PLAN

The Data Management Plan (DMP) outlines the strategies
and processes for efficiently organizing, sharing, and preserv-
ing the data used in this thesis for training, validating, and
testing ML models.

For WP1, the training data for the SL model will be
synthetic and self-generated, simulating a heterogeneous envi-
ronment with customizable satellite configurations and orbital
parameters, distributed across multiple constellations. To test
the SL model for encounter prediction, publicly available
datasets from Celestrak will be utilized. These datasets consist
of Two-Line Element (TLE) sets, which provide regularly
updated information on the current positions and orbits of
active satellites around Earth.

In WP2 and WP3, synthetic traffic data will be generated
based on historical traffic patterns to train and evaluate the RL-
based routing protocol, particularly to simulate and manage
congestion states.

Throughout the research, all data will be stored on i2CALC,
the local server at the i2CAT Foundation, which provides 11
TB of shared storage with the Distributed Artificial Intelli-
gence (DAI) department. Upon completion of the research,
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Fig. 3. Gantt diagram. Vertical blue line indicate the current month.

the data will be retained on the server for at least five years,
with public repositories considered for long-term storage and
accessibility.

DMP aligns with the FAIR principles, ensuring that the
data is Findable, Accessible, Interoperable, and Reusable. All
datasets will be properly documented with descriptive meta-
data, including their origin, purpose, and usage instructions,
and will feature unique identifiers (e.g., DOIs) to ensure
they are easily findable. To ensure accessibility, data will be
published to open-access repositories like Zenodo or UPC’s
repository. Additionally, some open-source code and simula-
tion environments will be uploaded to GitHub. Standardized
formats such as TXT, CSV, JSON, and HDF5 will ensure
interoperability and facilitate seamless integration with other
systems. To enhance reusability, metadata will include clear
citation guidelines and instructions, promoting adherence to
scientific standards, maximizing visibility and research impact,
and fostering broader collaboration.

VII. TRAINING PLAN

Some training activities are planned to be followed during
the 3-year PhD program. Some additional activities may be
added depending on the needs that might arise during the
research period.

• Activity 1 [1st year]: Scientific writing, by Gavin Lucas.
Provider: i2CAT Foundation. Dedicated time: 16 hours.

• Activity 2 [1st year]: Referencing and avoiding plagia-
rism. Provider: i2CAT Foundation. Dedicated time: TBD.

• Activity 3 [1dt year]: Effective communication, by Imma
Ripoll. Provider: i2CAT Foundation. Dedicated time: 10
hours.

• Activity 4 [1st year]: Machine Learning Engineering for
Production (MLOps), by Andrew Ng. Provider: Coursera.
Dedicated time: 65 hours.

• Activity 5 [1st year]: Public Speaking and Presentations,
by Nacho Téllez. Provider: i2CAT Foundation. Dedicated
time: 20 hours.

• Activity 6 [2nd year]: Research communication. Provider:
i2CAT Foundation.

• Activity 7 [2nd year]: Time and Stress Management.
Provider: i2CAT Foundation.

• Activity 8 [2nd and 3rd years]: Conducting laboratory
sessions at UPC as a teaching assistant, focused on my
area of expertise, mainly AI and programming.

• Activity 9 [3rd year]: Knowledge transfer, the protection
of research results, entrepreneurship, and technological
start-ups. Provider: i2CAT Foundation.

• Activity 10 [3rd year]: Post-doctoral research programs
and career advice.
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[46] J. A. Ruiz-de Azúa, C. Araguz, A. Calveras, E. Alarcón, and A. Camps,
“Towards an integral model-based simulator for autonomous earth ob-

13 Thursday 5th December, 2024



servation satellite networks,” in IGARSS 2018-2018 IEEE International
Geoscience and Remote Sensing Symposium. IEEE, 2018, pp. 7403–
7406.
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